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We present a class of diffraction-free partially coherent
beams, each member of which comprises a finite-power,
non-accelerating Airy bump residing on a statistically
homogeneous, Gaussian-correlated background. We exam-
ine free-space propagation of soft apertured realizations
of the proposed beams and show that their evolution is
governed by two spatial scales: the coherence width of the
background and the aperture size. A relative magnitude of
these factors determines the practical range of propaga-
tion distances over which the novel beams can withstand
diffraction. The proposed beams can find applications to
imaging and optical communications through random
media. ©2021Optical Society of America

https://doi.org/10.1364/OL.434168

Partially coherent light sources have attracted a great deal of
interest over the years because they generate a plethora of struc-
tured statistical light fields with intriguing properties [1,2] that
carry promise for multiple applications [3]. The majority of
partially coherent optical fields studied to date, though, have
been statistically homogeneous [4]. Yet, statistically nonuni-
form fields have also been explored, both theoretically [5–9] and
experimentally [10–13]. In particular, propagation invariant
random fields have been shown theoretically [6,7] and verified
experimentally [13] to necessarily possess nonuniform corre-
lations, as they manifest themselves as bumps or dips residing
atop a statistically homogeneous background. Such statistical
diffraction-free beams have been shown to possess universal
self-similar asymptotic propagation properties in random
media [14]. Several generalizations of random diffraction-
free beams have been proposed [15–17], including, notably,
white-light (polychromatic) dark/antidark fields on incoherent
background [15].

At the same time, coherent diffraction-free Airy waves in gen-
eral [18] and optical Airy beams in particular [19] have attracted
much attention since their experimental realization [20], not
the least bit because of their intriguing accelerating nature and
a wealth of potential applications [21]. Partially coherent Airy
beams have also been realized [22]. However, the latter, albeit
accelerating, are not genuine diffraction-free beams, even in
the ideal, infinite-power limit since their cross-spectral density
is not of the form of a bump (or dip) on a statistically uniform
background. This observation begs a fundamental question: can
one generate bona fide diffraction-free random Airy beams, and
if so, will their finite-power realizations accelerate in free space?

In this Letter, we demonstrate how a family of genuine
diffraction-free, partially coherent Airy sources can be con-
structed. We show that any member of the family is represented
by an Airy bump situated on a Gaussian correlated uniform
background. The coherence properties of any beam gener-
ated by such a source are controlled by a single dimensionless
parameter, a correlation parameter given by the ratio of a coher-
ence width of the background to a characteristic width of the
bump. We study free-space propagation of Gaussian apertured
realizations of the proposed beams and show that while their
acceleration is suppressed, the distance over which the new
beams can withstand diffraction is determined by the relative
magnitude of two spatial scales: the background coherence
width and aperture size.

We start with a general representation for the cross-spectral
density of any nonnegative definite 1D partially coherent source
in the form [23]

W(x1, x2)=

∫
∞

−∞

dk p(k)A∗(k, x1)A(k, x2), (1)

where we dub the nonnegative real function p(k)≥ 0,
p∗(k)= p(k), a spectral distribution and {A(k, x )} gen-
eralized modes of the source corresponding to a continuous
spectrum labeled by the variable k.

Let us consider a Gaussian spectral distribution of the modes,

p(k)=
σc
√

2π
e−k2σ 2

c /2, (2)

where σc is the source coherence length, and the plane wave
modes with cubic phase chirp, so that

A(k, x )=
√

2I0 cos

(
1

6
σ 3

I k3
+

1

2
kx
)

. (3)

I0 and σI , entering Eq. (3), set the scales of the source inten-
sity and spatial width of the bump, respectively. Numerical
coefficients are chosen for convenience. In physics terms,
Eqs. (1) through (3) imply that the source is composed of a
continuum of phase chirped plane waves, with each plane wave
contribution to the overall source intensity being weighed with
the Gaussian in Eq. (2). We can also surmise that σc controls the
source state of coherence. In particular, in the limit σc →∞,
we can infer at once that p(k)→ δ(k), implying the source
engenders a chirped plane wave in the fully coherent limit.
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As we will see in more precise terms shortly, σc plays the role of
the background coherence width.

It follows from the trigonometric identity,

cos α cos β =
1

2
[cos(α − β)+ cos(α + β)], (4)

that

A∗(k, x1)A(k, x2)= I0[cos(kx−/2)+ cos(σ 3
I k3/3+ kx+)],

(5)
where we introduced the center-of-mass and difference coordi-
nates as

x+ = (x1 + x2)/2, x− = x1 − x2. (6)

On substituting from Eq. (5) into Eq. (1), perform-
ing Gaussian integrations, and making use of the integral
representation of the Airy function,

Ai(x/σI )=
σI

2π

∫
∞

−∞

ds exp

(
iσ 3

I s 3

3
+ i s x

)
, (7)

we arrive at the cross-spectral density of an Airy beam on inco-
herent background (ABIB) in the form

WA(X−, X+)=Wbg(X−)+Wbp(X+), (8)

where

Wbg(X−)= exp

(
−

X 2
−

8ξc

)
(9)

is the cross-spectral density of a statistically uniform, Gaussian-
correlated background and

Wbp(X+)= P1De ξ
3
c /12e ξc X+/2Ai(X+ − X 0) (10)

is that of an Airy bump atop the background. Here we intro-
duced dimensionless variables, W =W/I0 and X± = x±/σI .
Further, we introduced a correlation parameter ξc = σ

2
c /σ

2
I as

well as a coordinate X 0 =−ξ
2
c /4 of the Airy function maxi-

mum and a total power P1D =
√

2πξc of the Airy bump. The
source intensity I A(X )=WA(X , X ) can be determined at once
from Eq. (8) by setting X− = 0 and X+ = X , which yields the
expression

I A(X )= 1+ P1De ξ
3
c /12e ξc X/2Ai(X − X 0). (11)

At this point, let us make some instructive observations.
First, Eqs. (8) through (11) imply that the newly constructed
sources generate bona fide diffraction-free beams, as the source
cross-spectral density has the propagation invariant form that
was first explicitly derived in [6]. Second, the properties of a
family of ABIBs are governed—in dimensionless units—by
the single correlation parameter ξc . Third, ideal ABIBs do not
accelerate: the peak intensity of the bump is located at a fixed
position dependent on the background coherence. Fourth,
each Airy bump carries a finite power P1D that increases with
the coherence level of the background. The last two properties
of the discovered beams bring into focus the sharp contrast
between ABIBs and fully coherent Airy beams. Interestingly, the
exponential cutoff of the source intensity at negative coordinates
arises naturally in the partially coherent case.

To visualize the spatial structure of a typical ABIB, we display
the intensity distribution of the beam for two values of the
correlation parameter in Fig. 1. We can infer from the figure that
while a rather correlated ABIB, such thatσI ≤ σc corresponding
to ξc ≥ 1, has a relatively high-intensity bump, a nearly uncor-
related ABIB with σc � σI features a short bump and a long
oscillatory left tail. This behavior can be explained by noticing
that a weakly correlated background breaks up the beam into a
number of essentially uncorrelated beamlets, each having nearly
the same peak intensity as its neighbor. While the oscillations
(beamlets) in the left tail of the ABIB are gently cut off at long
X by the exponential factor e ξc X/2, the ones in the right tail are
sharply suppressed by the super-exponential asymptotics of the
Airy function, Ai(X )∼ e−(2/3)X

3/2
as X →+∞.

An ideal ABIB carries infinite power because it dwells on a
statistically uniform background, and hence is not realizable in
the laboratory. We are then bound to consider a “softly” aper-
tured ABIB, which can be experimentally realized with the aid
of a Gaussian amplitude mask, for example, and examine free-
space paraxial propagation of the Gaussian apertured ABIB.
We assume that the aperture width w0 dwarfs the transverse
width of the bump, σI �w0. We schematically illustrate the
hierarchy of transverse scales governing free-space propagation
of finite-power ABIBs in Fig. 2. The cross-spectral density of the
apertured ABIB source has the form

W (0)(x1, x2)= exp

(
−

x 2
1 + x 2

2

2w2
0

)
WA(x1, x2), (12)

where WA is the cross-spectral density of the ideal ABIB given by
Eqs. (8) through (10). The intensity of the apertured ABIB with
the carrier wavenumber k0 in any cross section z≥ 0 is given by a
Fresnel transform [4]:

I (x , z)=
(

k0

2πz

) ∫
dx1

∫
dx2W (0)(x1, x2)e ik0(x−x2)

2/2z

× e−ik0(x−x1)
2/2z.

(13)

Fig. 1. (a) Intensity profile of an ideal ABIB as a function of X for
two values of the correlation parameter ξc : ξc = 0.1 (solid curve) and
ξc = 2 (dashed curve). (b) Contour plot of the ABIB intensity.

Fig. 2. Illustrating the hierarchy of transverse scales associated with
a Gaussian apertured Airy beam on incoherent background.
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On substituting from Eqs. (8) through (10) as well as from
Eq. (12) into (13) and converting to dimensionless center-of-
mass and difference coordinates, we obtain, after quite tedious
but straightforward integrations involving Gaussians and the
Airy function representation, the following expression:

I (X , z)= I bg(X , z)+ I bp(X , z), (14)

with

I bg(X , z)=
1√

1+ z2/z2
c

exp

(
−

ε2 X 2

1+ z2/z2
c

)
, (15)

and

I bp(X , z)=I 0(z) exp

[
ξc X

2

(1+ z2/z2
c )

(1+ z2/z2
R)

2

]

× exp

(
−

ε2 X 2

1+ z2/z2
R

)
Ai

[
X − X 0(z)

1+ z2/z2
R

]
. (16)

In Eqs. (14), (15), and (16), we introduced a small
dimensionless parameter ε = σI/w0� 1, and

I 0(z)=
P1D√

1+ z2/z2
R

exp

[
ξ 3

c

12

(
1+ z2/z2

c

1+ z2/z2
R

)3
]
, (17)

as well as

X 0(z)=−
ξ 2

c

4

(1+ z2/z2
c )

2

1+ z2/z2
R

. (18)

The physics of apertured ABIB evolution in free space
is incapsulated in two longitudinal scales: a Rayleigh range
zR = k0w

2
0 of the embedding Gaussian beam as well as a char-

acteristic diffraction length zc =
√

2k0σcw0 associated with
finite background coherence. We can infer from Eq. (15) that
the Gaussian background spreads, so that its coherence state
changes appreciably at the distances of the order of zc . By the
same token, it follows from Eqs. (16), (17), and (18) that while
the bump maintains its Airy shape, it spreads slowly over a
characteristic distance of the order of zR . It can then be viewed
as practically diffraction free over distances z� zR . A spe-
cific evolution scenario of the ABIB depends on whether the
background is nearly incoherent, σc � σI , or highly coherent,
σI � σc . In the former case, zc sets the scale for diffraction,
while in the latter, a characteristic distance over which the ABIB
succumbs to diffraction is determined by the Rayleigh range of
the Gaussian aperture.

To illustrate our qualitative conclusions, we exhibit the
evolution of an apertured Airy bump on a nearly incoher-
ent background (weakly correlated ABIB) in Fig. 3 for three
propagation distances measured in units of zc , which sets the
scale for diffraction there. We consider two cases, ε = 0.01
and ε = 0.1, corresponding to very large and moderately sized
apertures, respectively. In the wide-aperture limit [see Fig. 3(a)],
the ABIB remains nearly diffraction free. The beam main-
tains its ideal structure with a long oscillatory tail, although
the peak intensities of the main and secondary lobes diminish
with the propagation distance, as does the magnitude of the
background intensity. As the aperture size is reduced, though,
the ABIB structure undergoes an interesting evolution. The
beam tails, which are partially cut off by the aperture at short

Fig. 3. (a), (c) Intensity profiles of a nearly uncorrelated Gaussian
apertured ABIB as a function of X for three propagation distances:
z= 0.1zc (solid curve), z= zc (dashed curve), and z= 3zc (dashed-
dotted curve) and aperture size (a) ε = 0.01 and (c) ε = 0.1. (b),
(d) Contour plots of the Gaussian apertured ABIB with (b) ε = 0.01
and (d) ε= 0.1. The correlation parameter is ξc = 0.1.

propagation distances from the source plane, reappear on propa-
gation farther away, as the ABIB gradually transfers the power
from its main lobe into the tails. This scenario is evident in
Fig. 3(c). Eventually, over long enough propagation distances,
the sidelobes virtually disappear, and the tightly apertured
ABIB profile becomes nearly identical to that generated by
diffraction of a loosely apertured ABIB. This conclusion can
be confirmed by comparing the dashed-dotted curves corre-
sponding to the propagation distance z= 3zc in Figs. 3(a) and
3(c). Thus, a nearly universal shape of the weakly correlated
ABIB emerges over sufficiently long propagation distances,
regardless of the size of the Gaussian aperture. The magni-
tude of the propagation distance over which the reshaping
toward the asymptotic profile occurs does depend on the aper-
ture size through the dependence of zc on w0, of course. At
the same time, embedding an Airy bump on a fairly coher-
ent background (strongly correlated ABIB) into a Gaussian
envelope results in the ABIB spreading over a few character-
istic Rayleigh distances, as can be seen in Fig. 4. A strongly
correlated ABIB diffracts much like an ordinary Gaussian
beam, which makes it less attractive for potential applica-
tions than its weakly correlated counterpart. We also notice
by inspecting the contour plots in Figs. 4(b), 3(b), and 3(d)
that the ABIB acceleration is strongly suppressed in the partially
coherent case, irrespective of the aperture size and coherence
level of the background.

Finally, a generalization to a 2D ABIB is straightforward. To
this end, we can represent the cross-spectral density of the 2D
ABIB as

Fig. 4. (a) Intensity profiles of a strongly correlated Gaussian
apertured ABIB as a function of X for three propagation distances:
z= 0.1zR (solid curve), z= zR (dashed curve), and z= 3zR (dashed-
dotted curve) and aperture size ε= 0.3. (b) Contour plot of the
Gaussian apertured ABIB. The correlation parameter is ξc = 10.
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W(r1, r2)=

∫
dk p(k)A∗(k, r1)A(k, r2), (19)

where

p(k)=
∏

j=x ,y

σcj
√

2π
e−k2

j σ
2
cj/2, (20)

and

A(k, r)=
√

2I0 cos

1

6

∑
j=x ,y

σ 3
Ij k

3
j +

1

2
k · r

. (21)

Here we introduced the background coherence σcj and bump
intensity σIj widths along the corresponding axes j = x , y
of the Cartesian coordinate system; the source is, in general,
anisotropic. Repeating exactly the same steps as we took to
derive the cross-spectral density of the 1D ABIB, we arrive at the
expression

WA(R−,R+)=Wbg(R−)+Wbp(R+), (22)

with

Wbg(R−)= exp

(
−

X 2
−

8ξcx
−

Y 2
−

8ξcy

)
, (23)

and

Wbp(R+)=P2D exp
[
(ξ 3

cx + ξ
3
cy)/12

]
e ξcx X+/2e ξcyY+/2

× Ai(X+ − X 0)Ai(Y+ − Y0), (24)

where we introduced correlation parameters ξcj = σ
2
cj/σ

2
Ij

and a total power of a 2D Airy bump as P2D = 2π
√
ξcxξcy.

Notice that although the cross-spectral densities of the bump
and background individually factorize in Cartesian coordi-
nates, the cross-spectral density of a 2D ABIB does not. We
exhibit the intensity profiles of ideal 2D ABIBs in Fig. 5. We can
infer from the figure by comparing (a) through (d) that as the
source becomes progressively more correlated—or the back-
ground coherence level increases—the ABIB power localizes
more within the main lobe. This picture is consistent with our
findings for 1D ABIBs.

In summary, we have introduced a class of bona fide
diffraction-free statistical beams, ABIBs. While ideal ABIBs

Fig. 5. Contour plots of ideal 2D ABIB corresponding to (a) ξc =

0.01, (b) ξc = 0.1, (c) ξc = 1, and (d) ξc = 3.

do not accelerate in free space, their soft-apertured realizations,
which carry finite power and hence are amenable to laboratory
implementation, have their acceleration strongly suppressed.
The actual distance over which any finite-power ABIB defies
diffraction is determined by the interplay of the coherence width
of the random background and the aperture size. We anticipate
the proposed beams to find applications to imaging as well as
to optical communications and information transfer through
random media. We mention in this connection that the power
of coherence engineering of the source to enhance the quality of
optical imaging through random media has been convincingly
demonstrated not long ago [24].
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